

Cambridge IGCSE[™]

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 0620/32

Paper 3 Theory (Core)

February/March 2025

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 20 pages. Any blank pages are indicated.

1 A list of symbols and formulae is shown.

Ba²⁺
C
C l₂
C l⁻
CO
CO₂
CuO
H₂
H₂O
K⁺
Na⁺
O²⁻

2

Answer the following questions using only these symbols and formulae. Each symbol or formula may be used once, more than once or not at all.

(a) State which symbol or formula represents:

(i)	an element used as an inert electrode for electrolysis	
		[1]
(ii)	an ion formed when an atom gains two electrons	
		[1]
(iii)	a basic oxide	
		[1]
(iv)	an ion that gives a yellow colour in a flame test	
		[1]
(v)	a toxic gas formed during the incomplete combustion of methane	
		[1]
(vi)	an element used as a reactant in a fuel cell.	
		[1]

* 0000800000003 *

3

(b) Water, H₂O, is a simple covalent molecule.

Complete Fig. 1.1 to show the dot-and-cross diagram for a molecule of water.

Show outer shell electrons only.

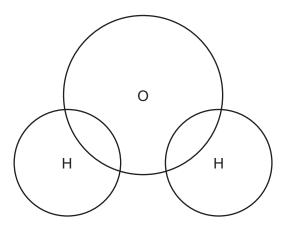


Fig. 1.1

[2]

[Total: 8]

2 This question is about metals and alloys.

(a) Table 2.1 shows information about the reactions of four different metals with oxygen.

Table 2.1

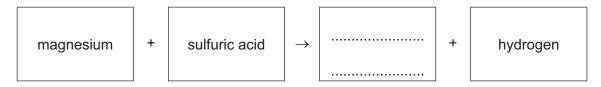
metal	reaction with oxygen
calcium	burns rapidly to form an oxide
cobalt	burns slowly to form an oxide
platinum	no reaction
tin	forms an oxide but does not burn

Put the four metals in order of their reactivity. Put the most reactive metal first.

	mos	st reactive ————————————————————————————————————	
			[2
b)	Cob	palt is a transition element. Lithium is an element in Group I of the Periodic Table.	
	Des	scribe two differences in the physical properties of cobalt compared to lithium.	
	1		
	2		
			[2
c)	Bra	ss and stainless steel are alloys.	
	(i)	Describe what is meant by the term alloy.	
			[1
	(ii)	Name the two metals in brass.	
		and	[2
	(iii)	Give one use for stainless steel.	
			[1

(d) (i) Deduce the number of protons, neutrons and electrons in the cobalt ion shown.

⁶⁰₂₇Co³⁺


5

	number of protons	
	number of neutrons	
	number of electrons	
(ii)	State the charge on a neutron.	3]
	[1	1]
	[Total: 12	2]

[1]

6

- 3 A student investigates the reaction of magnesium with dilute sulfuric acid.
 - (a) Complete the word equation for the reaction of magnesium with dilute sulfuric acid.

(b) The student sets up an experiment to investigate the rate of this chemical reaction.

The student:

- carries out the experiment at 25°C using 2.00g of magnesium ribbon and 25cm³ of dilute sulfuric acid
- measures the total volume of gas produced at regular time intervals
- plots a graph of the results.

Fig. 3.1 shows the graph of the student's results.

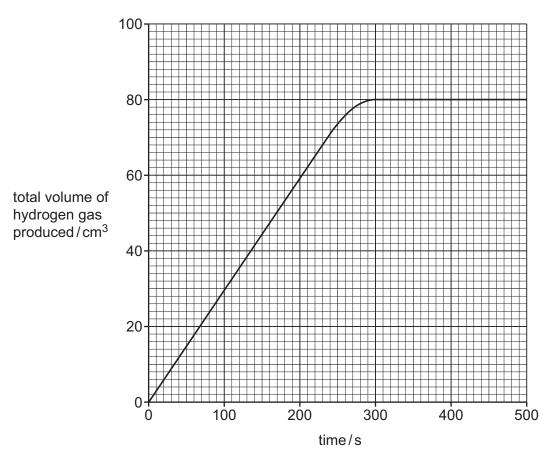


Fig. 3.1

||| 88||8| | 18||| 88||| 88||| 88||| 88||| 88||| 88||| 88||| 188|| 188|

(i) Draw a labelled diagram of the apparatus the student should use to carry out this investigation.

7

changes at a higher temperature.

[3]

[3]

)	The student repeats the experiment using sulfuric acid of a lower concentration.

AΠ	other	conditions	stay	the	same.

Describe	how the	rate	of the	reaction	differs	when	sulfuric	acid	of a	lower	conce	ntration
is used.												

Г1	ı
 ין	Ч

(vi) The student repeats the experiment using a catalyst.

All other conditions stay the same.

Describe how the rate of the reaction differs when a catalyst is used.

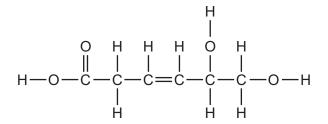
<u>آ</u> 1
 ι.

(c) Describe a test for hydrogen.

test	 	 	

observations[1]

[Total: 12]



Question 4 starts on the next page.

9

4 (a) Fig. 4.1 shows the displayed formula of compound B.

10

Fig. 4.1

(i)	On Fig. 4.1, draw a circle around the carboxylic acid functional group.	[1]
(ii)	Deduce the molecular formula of compound B .	
		[1]
(iii)	Explain why compound B is unsaturated.	
		[1]
(iv)	Describe a test for an unsaturated compound.	
	test	
	observations	
		[2]
Alka	anes are hydrocarbons.	
(i)	State the type of bonding in an alkane molecule.	
		[1]
(ii)	Ethane reacts with chlorine in a substitution reaction.	

[1]

(b)

Draw the displayed formula of the organic product of this reaction.

	*	C	C	0	0	8	0	00)(0	0	1	1	*										

ii) State the meaning of the term hydrocarbon.

	[1

(c) Petroleum contains hydrocarbons.

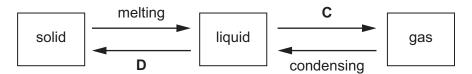
Name the process used to separate petroleum into its useful components.

[1]

(d) Complete Table 4.1 to show the name and use for some of the components in petroleum.

11

Table 4.1


name	use
gasoline/petrol	
	jet fuel
bitumen	
Ditalliell	

[3]

[Total: 12]

- 5 This question is about iron and its compounds.
 - (a) Fig. 5.1 shows the changes of the physical states of iron.

12

Fig. 5.1

Name the changes of physical states **C** and **D**.

(b) Use the kinetic particle model to describe the arrangement and motion of the particles in liquid iron.

arrangement

[2]

(c) Complete the symbol equation for the reaction of iron with oxygen.

....Fe +
$$O_2 \rightarrow Fe_3O_4$$
 [2]

- (d) Iron can be obtained from iron ore in the blast furnace.
 - Name the main ore of iron used in the blast furnace.

(ii) State **one** reason why carbon is burned in the blast furnace.

(iii) Name the **solid** compound that forms when limestone undergoes thermal decomposition.

......[1]

* 0000800000013 *

(e) Iron is used as a catalyst in the reaction shown.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

13

State the meaning of the symbol \rightleftharpoons .

.....[1

(f) Iron rusts when in contact with air and water.

Name **one** barrier method used to prevent iron from rusting.

.....[1

[Total: 11]

- 6 This question is about acids and bases.
 - (a) Dilute hydrochloric acid reacts with calcium carbonate powder. Name the **three** products formed in this reaction. 1 3 (b) State the colour of methyl orange when it is added to dilute hydrochloric acid.[1] (c) For the test for halide ions, a dilute acid and aqueous silver nitrate are required. Explain why the acid used must **not** be hydrochloric acid. Suggest a suitable dilute acid that can be used for the test for halide ions. (ii) (d) Barium carbonate is insoluble in water. Choose from the list one **other** compound that is insoluble in water. Tick (✓) one box. ammonium carbonate lead(II) sulfate

[Total: 8]

[1]

(e) Write the formula of the carbonate ion.

potassium hydroxide

sodium nitrate

(a) A list of common air and water pollutants is shown. 7

> methane nitrates oxides of nitrogen particulates plastics sewage

15

Answer the following questions using **only** these pollutants. Each pollutant may be used once, more than once or not at all.

State which pollutant:

 (ii) can be produced by the incomplete combustion of carbon-containing fuels (iii) is a gas formed from the decomposition of vegetation. (b) A 250 cm³ sample of polluted water contains 3.5 mg of particulates. Calculate the mass of particulates present in 100 cm³ of this polluted water. mass of particulates =	[1]												
(iii) is a gas formed from the decomposition of vegetation. (b) A 250 cm ³ sample of polluted water contains 3.5 mg of particulates. Calculate the mass of particulates present in 100 cm ³ of this polluted water. mass of particulates =	[1]												
(b) A 250 cm ³ sample of polluted water contains 3.5 mg of particulates. Calculate the mass of particulates present in 100 cm ³ of this polluted water. mass of particulates =													
Calculate the mass of particulates present in 100 cm ³ of this polluted water. mass of particulates =	ng [1]												
mass of particulates =r	ng [1]												
	ng [1]												
(c) Sulfur dioxide in the atmosphere causes acid rain.													
State one method of reducing the emissions of sulfur dioxide to the atmosphere.													
	[1]												
(d) Sulfur dioxide is a simple molecular compound.													
State two physical properties of simple molecular compounds.													
1													
2													

8 (a) Molten potassium chloride is electrolysed using inert electrodes.

	(i)	Name the product formed at each electrode.	
		product at positive electrode	
		product at negative electrode	
	(ii)	State the general name of the negative electrode used in electrolysis.	-]
		[1]
(b)	Pot	assium forms a salt when added to ethanoic acid.	
	Nar	ne the salt formed.	
		[1]
(c)	Dilu	te ethanoic acid gives a yellow colour when tested with universal indicator.	
	Cho	oose from the list the pH value for dilute ethanoic acid.	
	Dra	w a circle around your chosen answer.	
		pH1 pH5 pH7 pH13 [1]
(d)	Eth	anoic acid has the formula CH ₃ COOH.	
	Cor	nplete Table 8.1 to calculate the relative molecular mass of CH ₃ COOH.	

16

Table 8.1

type of atom	number of atoms	relative atomic mass	
carbon	2	12	2 × 12 = 24
hydrogen		1	
oxygen		16	

relative molecular mass =[2]

- (e) A molecule of ethanol also contains two carbon atoms.
 - Ethanol can be manufactured by the addition of steam to ethene.

17

In this process, a pressure of 60 atm is used.

State **two other** conditions used in this process.

1	
2	
	[2]

State one use of ethanol.

	[1]	
·		٠.

[Total: 10]

18

BLANK PAGE

* 0000800000019 *

19

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

••							 																
		=	2 He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon	118	Og	oganesson	ı
		=>			6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	П	iodine 127	82	¥	astatine -	117	<u>S</u>	tennessine	1
		>			80	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ро	molouium -	116	^	livermorium	1
		>			7	Z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209	115	Mc	moscovium	1
		≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium	-
		=			2	Ω	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	I	indium 115	18	11	thallium 204	113	R	nihonium	-
								1			30	Zu	zinc 65	48	b	cadmium 112	80	ĒΉ	mercury 201	112	C	copemicium	1
											59	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium	1
	Group										28	ï	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	damstadtium	1
	Gro										27	රි	cobalt 59	45	돈	rhodium 103	77	'n	iridium 192	109	₩	meitnerium	1
			- I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	H _s	hassium	1
					J						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	pohrium	1
						loc	SS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium	1
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>a</u>	tantalum 181	105	Ob	dubnium	1
					100	ato	rela				22	F	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	꿆	rutherfordium	1
								,			21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids		
		=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium	ı
		_			8	:=	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	&	rubidium 85	55	Cs	caesium 133	87	ŗ	francium	1
					•															-		_	_

20

7.1	Ę	lutetium	175	103	ئ	lawrencium	ı
70	Υp	ytterbium	173	102	8	nobelium	ı
69	E	thulium	169	101	Md	mendelevium	ı
89	ш	erbium	167	100	Fm	ferminm	ı
29	웃	holmium	165	66	Es	einsteinium	ı
99	ò	dysprosium	163	86	ర	californium	ı
99	Тb	terbium	159	26	益	berkelium	I
64	рg	gadolinium	157	96	Cm	curium	ı
63	Ш	europium	152	96	Am	americium	ı
62	Sm	samarium	150	94	Pu	plutonium	ı
61	Pm	promethium	ı	93	ď	neptunium	ı
09	ρN	neodymium	144	92	\supset	uranium	238
69	Ţ	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	T	thorium	232
22	Гa	lanthanum	139	68	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).