

Cambridge International AS & A Level

CHEMISTRY

Paper 1 Multiple Choice

February/March 2025 1 hour 15 minutes

9701/12

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet Soft clean eraser Soft pencil (type B or HB is recommended)

INSTRUCTIONS

- There are **forty** questions on this paper. Answer **all** questions.
- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do **not** use correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

This document has 20 pages. Any blank pages are indicated.

1 A Boltzmann distribution for a sample of a reacting gas at a constant temperature is shown. The activation energy, E_A , for the reaction is marked.

Point \times shows the number of particles whose energy is equal to the activation energy.

The temperature of the sample of gas is decreased. The shape of the distribution curve changes.

Which point could show the number of particles whose energy is the same as the activation energy at the new temperature?

2 Crystals of copper(II) nitrate are prepared by adding an excess of malachite to nitric acid. The formula of malachite is Cu(OH)₂•CuCO₃. (*M*_r = 221.0)
12.0 g of malachite is added to 30.0 cm³ of 1.50 mol dm⁻³ nitric acid. Which mass of malachite is left unreacted when the reaction is complete?
A 2.05 g B 2.49 g C 7.03 g D 9.51 g

3 X and Y are elements from the same group of the Periodic Table.

The 5th to 9th ionisation energies for X and Y are shown.

			ionisation energy/kJmol ⁻¹			
5th 6th 7th 8th		9th				
element	Х	11020	15 160	17870	92040	106437
element	Y	6 540	6540 9360 11020 33360 38600			

Which row identifies elements X and Y?

	element X	element Y
Α	argon	neon
в	chlorine	fluorine
С	fluorine	chlorine
D	neon	argon

4 An ion with a charge of 2– contains 10 electrons and 14 neutrons.

What is its nucleon number?

- **A** 14 **B** 22 **C** 24 **D** 26
- **5** The structure of the hormone histamine is shown.

Which row contains the bond angles x, y and z in histamine in the correct order from the smallest to the largest?

	smallest bond angle		largest bond angle
Α	x	У	z
В	У	X	z
С	У	z	x
D	z	У	x

6 When an organic acid reacts with an alcohol, a reversible reaction takes place producing an ester and water.

 $0.40\,mol$ of an organic acid and $0.30\,mol$ of an alcohol are mixed and allowed to stand at 25 $^\circ C$ until equilibrium is reached.

At equilibrium, 0.20 mol of ester is produced.

What is the value of the equilibrium constant, K_c , under the conditions used?

A 0.33 **B** 0.50 **C** 2.0 **D** 10

7 Information about two substances is given.

substance	electrical conductivity	effect of adding to water	melting point/K
Р	good when solid and when molten	reacts vigorously to produce an alkaline solution	454
Q	does not conduct in any state	reacts vigorously to produce an acidic solution	317

Which row describes the structure and bonding in substances P and Q?

	Р	Q
Α	giant metallic	simple molecular
В	simple molecular	giant metallic
С	giant ionic	simple molecular
D	giant metallic	giant ionic

8 An excess of zinc reacts with $x \text{ cm}^3$ of 2.00 mol dm⁻³ hydrochloric acid.

The gas produced is dried and collected.

The gas occupies $1.534 \, \text{dm}^3$ at $101\,000 \, \text{Pa}$ and $293 \, \text{K}$.

The gas produced behaves as an ideal gas.

What is the value of *x*?

A 31.8 cm^3 **B** 34.7 cm^3 **C** 63.6 cm^3 **D** 69.4 cm^3

9 An aqueous solution of hydrogen peroxide is placed in a flask and decomposes, as shown.

 $2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$

The total volume of oxygen gas evolved is $180 \, \mathrm{cm}^3$ after 90 seconds, measured under room conditions.

The rate of the reaction is calculated using the equation shown.

rate = $\frac{\text{change in moles of H}_2\text{O}_2}{\text{time}}$

What is the average rate of the reaction, measured in molmin⁻¹, over the duration of the experiment?

A 8.33×10^{-5} **B** 1.67×10^{-4} **C** 0.0050 **D** 0.010

10 Methanol is manufactured by reacting carbon dioxide and hydrogen together.

 $CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$ $\Delta H = -49 \text{ kJ mol}^{-1}$

What increases the equilibrium yield of methanol in this process?

- **A** increasing the pressure
- B adding an excess of steam
- **C** adding a catalyst
- **D** increasing the temperature
- **11** The equation for a reaction of $KClO_3$ is shown.

 $4KClO_3 \rightarrow KCl + 3KClO_4$

Which row is correct?

	disproportionation reaction	oxidation number of chlorine in KC1O4
Α	yes	+4
в	yes	+7
С	no	+4
D	no	+7

12 A student mixes 25.0 cm^3 of $0.100 \text{ mol dm}^{-3}$ sodium hydroxide solution with 25.0 cm^3 of $0.100 \text{ mol dm}^{-3}$ hydrochloric acid and the student records a temperature rise of 2.50 °C.

What is the enthalpy change of the reaction per mole of NaOH?

- **A** $-209 \, \text{kJ} \, \text{mol}^{-1}$
- **B** $-104.5 \text{ kJ mol}^{-1}$
- **C** $-209 \, \text{J} \, \text{mol}^{-1}$
- **D** –522.5 J mol⁻¹

13 Carbon monoxide and methanol can react together to form ethanoic acid.

$$CO(g) + CH_3OH(I) \xrightarrow{\Delta H_r^{\circ}} CH_3CO_2H(I)$$

Standard enthalpy changes of combustion are given in the table.

compound	standard enthalpy change of combustion, ΔH_{c}^{e}
со	-283.0 kJ mol ⁻¹
CH₃OH	$-726.0 \text{kJ} \text{mol}^{-1}$
CH₃CO₂H	$-874.1 \text{kJ} \text{mol}^{-1}$

What is the value for ΔH_r^{\bullet} for the reaction between carbon monoxide and methanol?

- A -1883.1 kJ mol⁻¹
- **B** –134.9 kJ mol⁻¹
- **C** +134.9 kJ mol⁻¹
- **D** +1883.1 kJ mol⁻¹
- 14 Copper reacts with nitric acid under certain conditions. The products are copper(II) nitrate, water and an oxide of nitrogen.

3 mol of copper reacts with exactly 8 mol of nitric acid.

What is the oxidation state of nitrogen in the oxide produced?

A +1 B +2 C +3 D +4

15 All the reactants and products of an exothermic reaction are gaseous.

Which statement about this reaction is correct?

- **A** The total bond energy of the products is less than the total bond energy of the reactants, and ΔH for the reaction is negative.
- **B** The total bond energy of the products is less than the total bond energy of the reactants, and ΔH for the reaction is positive.
- **C** The total bond energy of the products is more than the total bond energy of the reactants, and ΔH for the reaction is negative.
- **D** The total bond energy of the products is more than the total bond energy of the reactants, and ΔH for the reaction is positive.

16 Propene, hydrogen cyanide and carbon dioxide each contain π bonds.

Which molecules contain two π bonds?

- **A** carbon dioxide and hydrogen cyanide
- **B** carbon dioxide and propene
- **C** hydrogen cyanide and propene
- **D** hydrogen cyanide only
- **17** Q, R and S are consecutive elements in Period 3 of the Periodic Table. Element R has the highest first ionisation energy and the lowest melting point of these three elements.

What are the identities of Q, R and S?

	Q	R	S
Α	Na	Mg	Al
В	Mg	Al	Si
С	Al	Si	Р
D	Si	Р	S

18 A reaction scheme for a Group 2 metal, M, is shown.

Which row is correct as M descends Group 2 from Mg to Ba?

	solubility of Y in water	solubility of Z in water
Α	decreases	decreases
в	decreases	increases
С	increases	decreases
D	increases	increases

19 U, V and W represent different halogens. The table shows the results of nine experiments in which aqueous solutions of U₂, V₂ and W₂ were separately added to separate aqueous solutions containing U⁻, V⁻ and W⁻ ions.

	U⁻(aq)	V⁻(aq)	W⁻(aq)
U₂(aq)	no reaction	no reaction	no reaction
V ₂ (aq)	U_2 formed	no reaction	W_2 formed
W ₂ (aq)	U_2 formed	no reaction	no reaction

Which row contains the ions U^- , V^- and W^- in order of their **decreasing** strength as reducing agents?

	strongest		weakest
Α	U⁻	V^{-}	W^-
в	U⁻	W ⁻	V^{-}
С	V^{-}	W^-	U ⁻
D	W^-	U⁻	V^{-}

20 J is either MgC l_2 or A lCl_3 .

K is either SiO_2 or $SiCl_4$.

Which row is correct?

	identity of J	identity of K
Α	AlCl ₃	SiC14
в	AlCl ₃	SiO ₂
С	MgCl ₂	SiC14
D	MgCl ₂	SiO ₂

21 River water in an agricultural area contains NH_4^+ , CO_3^{2-} , HCO_3^- , Cl^- and NO_3^- ions. This water is treated by adding a calculated quantity of calcium hydroxide.

What is precipitated from the river water when calcium hydroxide is added?

A $CaCl_2$ **B** $CaCO_3$ **C** $Ca(NO_3)_2$ **D** NH_4OH

- 22 Four atmospheric pollutants are listed.
 - 1 nitrogen oxides
 - 2 carbon monoxide
 - 3 unburnt hydrocarbons
 - 4 sulfur dioxide

Which pair of pollutants react to form peroxyacetyl nitrate, PAN?

- **A** 1 and 3 **B** 1 and 4 **C** 2 and 3 **D** 2 and 4
- 23 Which graph correctly describes a trend found in Group 17?

[X represents a halogen atom.]

24 Gas M is produced when $NH_4Cl(aq)$ is heated with CaO(s).

Which row is correct?

	type of reaction	identity of M
Α	acid–base	N_2
В	redox	NH_3
С	acid–base	NH_3
D	redox	N_2

25 Two nitrates decompose on heating according to the equations shown.

$$\begin{aligned} & 2\mathsf{Pb}(\mathsf{NO}_3)_2(\mathsf{s}) \to 2\mathsf{PbO}(\mathsf{s}) + 4\mathsf{NO}_2(\mathsf{g}) + \mathsf{O}_2(\mathsf{g}) \\ & 2\mathsf{NH}_4\mathsf{NO}_3(\mathsf{s}) \to 2\mathsf{N}_2(\mathsf{g}) + \mathsf{O}_2(\mathsf{g}) + 4\mathsf{H}_2\mathsf{O}(\mathsf{I}) \end{aligned}$$

One mole of each nitrate is heated separately. The gas produced in each reaction is bubbled through NaOH(aq).

The volume of any gas that does not react with NaOH(aq) is then collected and measured.

Which nitrate:

- shows the greater percentage loss in mass
- produces the greater volume of gas collected?

	greater percentage loss of mass	greater volume of gas collected
Α	NH_4NO_3	NH ₄ NO ₃
В	NH_4NO_3	Pb(NO ₃) ₂
С	Pb(NO ₃) ₂	NH ₄ NO ₃
D	Pb(NO ₃) ₂	Pb(NO ₃) ₂

26 Organic compound X has the empirical formula C_2H_4O .

Compound X is reduced by $LiAlH_4$, but **not** by $NaBH_4$.

What is compound X?

- A ethanoic acid
- B ethanal
- C butan-1-ol
- **D** butanoic acid
- 27 What is the mechanism of the reaction of hydrogen cyanide with propanone?
 - **A** electrophilic addition
 - **B** electrophilic substitution
 - **C** nucleophilic addition
 - **D** nucleophilic substitution

- **28** Which compound may be synthesised from an alkene, with formula C_4H_8 , by an addition reaction?
 - A 1,1-dibromobutane
 - **B** 1,2-dibromobutane
 - C 1,3-dibromobutane
 - **D** 1,3-dibromomethylpropane
- **29** The structure of compound G is shown.

Compound G undergoes addition polymerisation.

Which diagram shows the repeat unit of the polymer formed?

30 Compound T is tested with three reagents and gives the results shown.

reagent	result
2,4-DNPH	orange precipitate
Fehling's solution	no reaction
acidified K ₂ Cr ₂ O ₇	no reaction

What is compound T?

- A (CH₃)₂CHCHO
- **B** (CH₃)₂CHCH₂OH
- C CH₃CH(OH)COCH₃
- D (CH₃)₂CHCOCH₃

31 Reagent X is added separately to 2-methylbutan-1-ol and 3-methylbutan-2-ol.

The visible results are different.

What is reagent X?

- A Na(s)
- **B** alkaline I₂(aq)
- **C** PC*l*₅
- D acidified KMnO₄
- **32** Compound Y is hydrolysed by warm aqueous silver nitrate to form a precipitate that is soluble in dilute aqueous ammonia.

Compound Y undergoes an elimination reaction to form an alkene.

What is the skeletal formula of compound Y?

33 Propan-2-ol can be converted into 2-chloropropane using reagent M followed by reagent N.

Which row is correct?

	reagent M	reagent N
Α	concentrated NaOH	Cl_2
в	concentrated H_2SO_4	Cl_2
С	concentrated H ₃ PO ₄	HC1
D	concentrated NaOH	HC1

34 Skeletal formulae of four organic compounds are shown.

Which two compounds when separately heated with dilute sulfuric acid produce propanoic acid as one of the products?

A 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4

35 1-chloro-2-methylpropane and 2-bromo-2-methylbutane react separately with aqueous silver nitrate in ethanol.

Both reactions proceed via nucleophilic substitution and a precipitate is formed.

The time taken for 1-chloro-2-methylpropane to form a precipitate is T_1 .

The time taken for 2-bromo-2-methylbutane to form a precipitate is T_2 .

Which row is correct?

	compound	main reaction mechanism	time taken for precipitate to appear
Α	1-chloro-2-methylpropane	S _N 1	$T_2 > T_1$
в	1-chloro-2-methylpropane	S _N 2	$T_1 > T_2$
С	2-bromo-2-methylbutane	S _N 1	$T_2 > T_1$
D	2-bromo-2-methylbutane	S _N 2	$T_1 > T_2$

36 The diagram shows the structure of progesterone.

Which statement about progesterone is correct?

- **A** One molecule contains four chiral carbon atoms only; the molecular formula is $C_{19}H_{26}O_2$.
- **B** One molecule contains four chiral carbon atoms only; the molecular formula is $C_{21}H_{30}O_2$.
- **C** One molecule contains six chiral carbon atoms; the molecular formula is $C_{19}H_{26}O_2$.
- **D** One molecule contains six chiral carbon atoms; the molecular formula is $C_{21}H_{30}O_2$.

37 A molecule of hexane can be cracked in a number of different ways.

Three compounds are listed.

1 $C_{3}H_{8}$ 2 $C_{4}H_{8}$ 3 $C_{5}H_{12}$

Which compounds are found in the mixture of products from the cracking of hexane molecules?

- **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only
- **38** The diagrams show the structures of two isomeric dicarboxylic acids, X and Y.

X can be reduced to compound P with empirical formula C_2H_5O .

Y can be reduced to compound Q, also with empirical formula C_2H_5O .

Which statement is correct?

- **A** X is a cis isomer; compound P and compound Q are identical.
- **B** X is a cis isomer; compound P and compound Q are isomers of each other.
- **C** X is a trans isomer; compound P and compound Q are identical.
- **D** X is a trans isomer; compound P and compound Q are isomers of each other.
- **39** What is the total number of sp^3 hybridised atomic orbitals used in the bonding of but-2-ene?

A 2 **B** 4 **C** 6 **D** 8

40 Compound L contains carbon atoms. It is analysed in a mass spectrometer.

The table shows the relative abundance of the only two peaks recorded with m/e greater than 127.

m/e	relative abundance
128	50
129	5.5

How many carbon atoms are present in one molecule of compound L?

A 5 **B** 7 **C** 8 **D** 10

BLANK PAGE

16

BLANK PAGE

BLANK PAGE

18

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C mol^{-1}}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{ mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m}$ = 22.4 dm ³ mol ⁻¹ at s.t.p. (101 kPa and 273 K) $V_{\rm m}$ = 24.0 dm ³ mol ⁻¹ at room conditions
ionic product of water	$K_{\rm w}$ = 1.00 × 10 ⁻¹⁴ mol ² dm ⁻⁶ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \mathrm{kJ} \mathrm{kg}^{-1} \mathrm{K}^{-1} (4.18 \mathrm{J} \mathrm{g}^{-1} \mathrm{K}^{-1})$

Important values, constants and standards

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

7 18 7 18 7 18 8 10 10 10 10 10 11 10 12 18 13 18 14 10 15 18 16 10 17 10 18 10 18 11 18 18 19 20.2 20.2 20.2 20.3 39.9 8.5 8.38 8.38 83.38	I Xe incine xeroin 126:0 131:3 85 86 85 86 85 86 85 86 126:0 131:3 astatime atatime 117 118 117 118 117 118 7 00 ennessine oganesson 71 1
	L 126:9 85 85 85 85 85 1126:9 117 117 117 7 7 7 7 7 7 7 7 7 7 7 7 7
17 17 19:00 19:00 17 17 17 17 19:00 17 17 17 17 17 17 17 17 17 17 17 17 17	
16 16:0 16:0 16:0 16:0 16:0 16:0 16:0 16	telluruum 127,6 84 88 84 84 84 70 70 70 70 70 70
15 15 15 14.0 14.0 14.0 33 33 33 33 33 33 51.0 51 51 51 55 55	H C C C C C C C C C C C C C C C C C C C
C 28:11 72.6 S 50 S 50	Sn tin 118.7 118.7 118.7 118.7 118.7 118.7 118.7 118.7 118.7 118.7 118.7 118.7 118.7 7 118.7 7 118.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
$\begin{array}{c c} & & & 1\\ & & & & \\ & & & & \\ & & & & \\ & & & &$	L I I I I I I I I I I I I I
Cd ⁴⁸ ⁴ ¹² ³⁰ ³⁰ ³⁰ ³⁰ ³⁰ ¹²	Cd admium 112.4 11
ments 29 Cu Cu Co 83.5 83.5 Ad	Ag silver 107.9 79 107.9 107.9 107.9 111 111 111 111 111 111 111 1
The Periodic Table of Elements 1 <tr< td=""><td>Paladuum 106.4 78 78 78 78 78 78 78 78 78 78 78 78 70 84 110 110 84 120 84 84 84 85 110 85 110 85 110 85 87 87 87 87 87 87 87 87 87 87 87 87 87</td></tr<>	Paladuum 106.4 78 78 78 78 78 78 78 78 78 78 78 78 70 84 110 110 84 120 84 84 84 85 110 85 110 85 110 85 87 87 87 87 87 87 87 87 87 87 87 87 87
9 Codic Table Group 27 Co Co Co Co Co Co Co Co Co Co	Hodium 102.9 109 109 109 109 109 109 109 109 109 10
The Per A 1.0 A 1.0 B 55.8 S 55.8	Cuthenium 101.11 101.11 108 190.2 108 190.2 108 190.2 108 190.2 108 108 108 108 108 108 108 108 108 108
7 53.9 54.9 7 7 7 7 7	C T5 T5 T5 T5 T5 T5 T5 T5 T5 T5
6 6 852.0 52.0 Mo	Molybdenum 95.99 95.99 74 74 106 106 80 seaborgium seaborgium
Key atomic number atomic symbol atomic symbol </td <td>P N N N N N N N N</td>	P N N N N N N N N
Zr 4 4 22 22 4 4 4 Zr Zr Zr 22 Zr 40 9	Zirconium 21:conium 72 72 72 72 72 73 76 76 76 76 76 76 76 76 76 76 76 76 76
× 33 33 33 33 33 33 33 33 33 33 33 33 33	Y yttrum 88 99–103 89–103 actinoids 57–71 1 103 89–103 57–77 1 103 103 103 103 103 103 103
S S S S S S S S S S S S S S	strontum strontum 56 56 56 56 56 56 56 56 56 56 56 56 56
B 33 1 23.0 23.0 23.0 33 <t< td=""><td>RD abidum 85.5 55 CS CS 132.9 132.9 132.9 132.9 132.9 1 132.9 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<>	RD abidum 85.5 55 CS CS 132.9 132.9 132.9 132.9 132.9 1 132.9 1 1 1 1 1 1 1 1 1 1 1 1 1

Lu Iutetium 175.0 103 Lr kwrencium Yb ytterbium 173.1 102 NO nobelium mendelevium Int the second s Er erbium 167.3 167.3 fr fr fr mium Ho holmium 164.9 99 99 BS Dy dysprosium 162.5 98 Cf Cf Tb terbium 158.9 97 97 Bk berkelium Gd 157.3 96 Cm curium Eu europium 152.0 95 Am americium Smarium 150.4 94 Pu 93 **Np** neptunium promethium E L neodymium 144.2 92 U uranium 238.0 Zq praseodymiurr 140.9 91 Pa protactinium 231.0 ì Cerium Cerium 90 232.0 La lanthanum 138.9 89 89 actinium lanthanoids actinoids

20