

Cambridge International AS & A Level

61260	CANDIDATE NAME								
	CENTRE NUMBER		CANDIDATE NUMBER						
κ ω ∞	CHEMISTRY		9701/22						
	Paper 2 AS Lev	el Structured Questions	February/March 2025						
			1 hour 15 minutes						
* 3 3 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	You must answe	er on the question paper.							

No additional materials are needed.

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page. •
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid. •
- Do not write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets []. •
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

1 Phosphorus and chlorine are elements in Period 3 of the Periodic Table.

(a) Chlorine forms three different compounds with phosphorus.

The most common compounds are PCl_3 and PCl_5 .

(i) Complete Table 1.1.

Table 1.1

2

compound	oxidation number of P	oxidation number of Cl
PCl ₃		
PC15		

[2]

(ii) In a closed system, PCl_3 and PCl_5 exist in an equilibrium mixture as shown in reaction 1.

reaction 1 $PCl_3(I) + Cl_2(g) \Longrightarrow PCl_5(s)$ $\Delta H = -124 \text{ kJ mol}^{-1}$

Deduce **two** conditions that favour the production of PCl_5 in reaction 1.

2	
~	
	[2]

(iii) The third compound of phosphorus and chlorine, **W**, has a relative molecular mass, M_{r} , between that of PC l_3 and PC l_5 . The compound contains 69.6% by mass of chlorine.

Determine the molecular formula of \mathbf{W} .

	molecular formula of W =
(iv)	W is a liquid at room temperature and pressure. It reacts vigorously with water to form an acidic solution.
	Suggest the structure and bonding in W . Explain your answer.
	[2]

DO NOT WRITE IN THIS MARGIN

(b) Fig. 1.1 shows a reaction scheme involving P_4 and Cl_2 .

3

[1]

[Turn over

(c) 1,2-dichloroethane, $ClCH_2CH_2Cl$, reacts with NaOH to produce an unsaturated compound, C_2H_3Cl , as shown in reaction 7.

4

reaction 7
$$ClCH_2CH_2Cl + NaOH \rightarrow C_2H_3Cl + H_2O + NaCl$$

(i) State what is meant by unsaturated.

- (d) Compound D contains carbon, hydrogen and chlorine only.
 - Fig. 1.2 shows the mass spectrum of **D**.

(i) Explain the relative abundance of peaks 1 and 2 in the mass spectrum in Fig. 1.2.

......[1]

(ii) Suggest the structure of **D**.

[1]

[Total: 17]

(ii) Table 2.1 shows successive ionisation energy values for beryllium, Be.

Table 2.1

	1st	2nd	3rd	4th
ionisation energy/kJmol ⁻¹	900	1760	14800	21000

Use Table 2.1 to state and explain:

- the general trend in these values
- the significance of the large difference between the 2nd and 3rd ionisation energies.

All the Group 2 elements except beryllium have more than one stable isotope. (c)

6

Beryllium exists as the single isotope ${}^{9}_{4}$ Be. (i)

Describe the distribution of mass within an atom of ${}_{4}^{9}$ Be.

(ii) Complete Table 2.2 to show the numbers of protons and neutrons in the isotopes of magnesium.

isotope	number of protons	number of neutrons
magnesium-24		
magnesium-25		
magnesium-26		

- [2]
- Fig. 2.1 shows the behaviour of a beam of protons in an electric field. (iii)

Complete Fig. 2.1 to show the behaviour of separate beams of neutrons and electrons in the same electric field.

Label your diagram clearly. Assume that the beams of each particle are moving at the same velocity.

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

[3]

DO NOT WRITE IN THIS MARGIN

I

00080000007
7
(d) (i) State what is observed when dilute hydrochloric acid is added to separate samples of barium oxide and barium carbonate.
barium oxide
barium carbonate[2]
[-]
(ii) Write an equation for the reaction of strontium, Sr, with an excess of cold water.
[1]
(iii) State the variation in solubility of the Group 2 sulfates down the group.
[1]
[Total: 17]

3 The halogens chlorine, bromine and iodine show trends in chemical and physical properties down the group.

8

Table 3.1 shows some properties of chlorine, bromine and iodine.

				1
proper	ty	chlorine	bromine	iodine
colour and state at ro	om temperature	green gas		
bond energy/	kJ mol ^{−1}	242	193	151
electronega	ativity	3.0	2.8	2.5
formula of sodi	um halide	NaC1	NaBr	NaI
	e Table 3.1.			[1]
(ii) The bond	l energy values in	Table 3.1 refer to the	e X—X bond where X	X is the halogen.
Explain th	ne trend in the bor	nd strength of the X–	-X bond in the halog	gens.
				[2]
		ation, how chlorine, C	l_2 , is used in water	purification.
State the role	of the active spec	ies produced.		
				[2]
(c) The sodium h	alides in Table 3.1	also show trends in	chemical properties	
(i) Identify the	ne sodium halide t	hat reacts with conce	entrated H₂SO₄ to fo	orm H₂S.
				-
				/ acid-base reaction
				[1]
(iii) A studen observed	t adds a few dro			r(aq). State what is
				[1]

Table 3.1

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

(d) lodine monobromide, IBr, is a dark red solid that melts near room temperature.

9

IBr reacts with propene. The mechanism for this reaction is the same as the mechanism for that of HBr with propene.

(i) Identify all the intermolecular forces that exist between molecules of IBr.

......[1] (ii) Name the mechanism involved in the reaction of IBr with propene.

The reaction of IBr with propene forms two structural isomers. (iii)

Draw the two structural isomers shown by these molecules.

(iv) Identify the type of structural isomerism shown by the molecules in (d)(iii). Explain why the two structural isomers do **not** form in equal amounts. (v)

[Total: 15]

[2]

矖

* 0000800000010 *

4 Fig. 4.1 shows compounds J to M, each of which contains four carbon atoms.

10

Fig. 4.1

(a) Table 4.1 gives details of tests on J to M. In each test, only two compounds give a positive result.

Complete Table 4.1.

Tab	ole	4.1	

F		· · · · · · · · · · · · · · · · · · ·
reagent	observation of positive result	compounds that give a positive result
acidified K ₂ Cr ₂ O ₇ (aq)		J and L
alkaline I ₂ (aq)	yellow precipitate	
	orange precipitate	J and K
Na(s)		

(b) K reacts with HCN in the presence of a KCN catalyst, forming N.

(i) Complete Fig. 4.2 to show the mechanism for this reaction.

Include charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.

11

.....[1] [Total: 11]

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C mol^{-1}}$
Avogadro constant	$L = 6.02 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m}$ = 22.4 dm ³ mol ⁻¹ at s.t.p. (101 kPa and 273 K) $V_{\rm m}$ = 24.0 dm ³ mol ⁻¹ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} {\rm mol}^2 {\rm dm}^{-6}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \mathrm{kJ} \mathrm{kg}^{-1} \mathrm{K}^{-1} $ (4.18 J g ⁻¹ K ⁻¹)

龖

© UCLES 2025

* 0000800000012 *																								
		18	2	He	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	Ъ	krypton 83.8	54	Xe	xenon 131.3	86	Rn	radon -	118	Og	oganesson	I
		17				6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Br	bromine 79.9	53	Ι	iodine 126.9	85	At	astatine 	117	Ts	tennessine	I
		16				8	0	oxygen 16.0	16	ა	sulfur 32.1	34	Se	selenium 79.0	52	Те	tellurium 127.6	84	Ро	polonium –	116	L<	livermorium	I
		15				7	z	nitrogen 14.0	15	٩	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Bi	bismuth 209.0	115	Mc	moscovium	I
		14				9	ပ	carbon 12.0	14	S.	silicon 28.1	32	Ge	germanium 72.6	50	Sn	tin 118.7	82	РЬ	lead 207.2	114	۶l	flerovium	I

3

The Periodic Table of Elements

Group

 \sim

~

1.0 T 1.0

atomic symbol name relative atomic mass

atomic number Key

	57	58	59	60	61	62	63	64	65	66	67	68	69		71
Inthanoids	La	0 O	ŗ	Nd	Ът	Sm	Еu	Вd	Tb	D	РH	ц	Tm	٩Y	Lu
	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium		lutetium
	138.9	140.1	140.9	144.2	I	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9		175.0
	89	06	91	92	93	94	95	96	97	98	66	100	101		103
ctinoids	Ac	Тh	Ра		ЧN	Pu	Am	Cm	異	Ç	Еs	Е Н	Md		Ļ
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium		lawrencium
	1	232.0	231.0	238.0	I	I	I	I	I	I	I	I	I		I

 $\begin{array}{c} 5 \\ B \\ B \\ 10.8 \\ 110.8 \\ 110.8 \\ 27.0 \\ 27.0 \\ 27.0 \\ 27.0 \\ 27.0 \\ 113 \\ 111 \\ 114.8 \\ 114.8 \\ 114.8 \\ 114.8 \\ 114.8 \\ 1113 \\$

11 29 29 29 29 29 29 20 29 20 20 107.9 2

9 27 27 27 27 58.9 58.9 58.9 58.9 102.9 102.9 102.9 1092.2 1092.2 1092.2

8 26 26 26 55.8 55.8 55.8 10 101.1 101.1 101.1 101.1 100.2 0 76 76 100.2

4 12 22 22 47.9 47.9 47.9 47.9 47.9 178.5 104 178.5 104 178.5 104 178.5 104

89–103 actinoids

A beylium beylium beylium beylium beylium 200 and 200

a solution in the second secon

~

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series

DO NOT WRITE IN THIS MARGIN