

Cambridge International AS & A Level

si vijes Vijese Storage Roman	CANDIDATE NAME				
	CENTRE NUMBER	CANDIDATE			
	CHEMISTRY		9701/52		
л	Paper 5 Plannin	g, Analysis and Evaluation	February/March 2025		
			1 hour 15 minutes		
	You must answe	er on the question paper.			

CHEMISIRY

No additional materials are needed.

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page. •
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid. •
- Do not write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 30.
- The number of marks for each question or part question is shown in brackets []. •

This document has 16 pages. Any blank pages are indicated.

- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

* 000080000002 *

1 Brass is an alloy of copper and zinc.

An experiment is completed to find the percentage by mass of copper in a sample of brass.

2

In the experiment, the sample of brass is reacted with an excess of concentrated nitric acid, HNO_3 . This forms a solution containing $Cu^{2+}(aq)$ ions. The amount of $Cu^{2+}(aq)$ ions formed is determined by titration.

A student uses the following method.

- **step 1** Weigh a glass beaker and record the mass.
- **step 2** Add approximately 1.00g of powdered brass to the beaker and record the mass of the beaker and the brass.
- step 3 Transfer the brass into conical flask A which contains excess concentrated HNO₃.
- step 4 Reweigh the glass beaker and record the mass.
- step 5 Add aqueous sodium carbonate, Na₂CO₃(aq), dropwise to flask A until a precipitate of copper(II) carbonate, CuCO₃(s), appears. Then add dilute ethanoic acid dropwise until the precipitate is fully dissolved.
- **step 6** Transfer all the contents of flask **A** to a 100.0 cm³ volumetric flask and make up to the mark with distilled water. This is solution **B**.
- step 7 Transfer 10.0 cm³ of solution **B** into conical flask **C**.
- **step 8** Add 10 cm³, an excess, of aqueous potassium iodide, KI(aq), to flask **C**.
- **step 9** Titrate the contents of flask **C** against 0.0600 mol dm⁻³ sodium thiosulfate, Na₂S₂O₃(aq), using starch solution as an indicator.
- step 10 Repeat steps 7 to 9 until concordant results are obtained.

DO NOT WRITE IN THIS MARGIN

			3	_	
(a)	Both copper and z	inc in brass react wi	th concentrated HNO ₃ in step 3 .		
	reaction 1	Zn(s) + 4HNO ₃ (aq	$q) \rightarrow Zn(NO_3)_2(aq) + 2NO_2(g) + 2H_2O(I)$		
	reaction 2	Cu(s) + 4HNO ₃ (ac	$q) \rightarrow Cu(NO_3)_2(aq) + 2NO_2(g) + 2H_2O(I)$		
	Suggest why step	3 in the experiment	should be completed in a fume cupboard.		
(b)	(b) Explain why the glass beaker is reweighed in step 4 .				
				[1]	
(c)	Name a suitable p		transfer the 10.0 cm ³ of solution B in step 7 .		
(d)	-	nce used to rinse the	e burette before step 9 is done for the first tin	ne.	
(e)	In step 9 , 0.0600r	noldm ⁻³ Na ₂ S ₂ O ₃ (ad	q) is used. oldm ^{-3} Na ₂ S ₂ O ₃ (aq) before the experiment.	[1]	
		nake a 100.0 cm ³ sta ³ Na ₂ S ₂ O ₃ (aq) solutio	candard solution of 0.0600 moldm ⁻³ $Na_2S_2O_3$ on.	(aq) from	
	Give the name and	d capacity of any app	paratus you would use.		
	Write your answer	in a series of number	ered steps.		
				[3]	

25

[Turn over

1

(f) The measurements collected during steps 1 to 4 are shown in Table 1.1.

Table 1.1

mass of glass beaker/g	25.55
mass of glass beaker containing powdered brass/g	
mass of glass beaker after transferring brass to conical flask \mathbf{A}/g	25.65

Determine the mass of powdered brass added to conical flask **A**.

mass of powdered brass = g [1]

(g) The volumes measured in each of the titrations are shown in Table 1.2.

Table 1.2

	rough titration	titration 1	titration 2	titration 3
final burette reading/cm ³	24.05	24.80	45.35	22.50
initial burette reading/cm ³	3.25	4.50	24.80	2.10
titre/cm ³				

- (i) Complete Table 1.2.
- (ii) Calculate a suitable mean titre to use in the calculations.

mean titre = $\dots cm^3$ [1]

(iii) Calculate the percentage error in the titre in titration 3. Show your working.

percentage error = % [1]

[1]

(h) In step 8, $Cu^{2+}(aq)$ ions react with I⁻(aq) ions. The ionic equation for the reaction is shown.

5

reaction 3 $2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2(aq)$

In step 9, $Na_2S_2O_3(aq)$ reacts with $I_2(aq)$ formed in reaction 3. The equation for the reaction is shown.

reaction 4 $I_2(aq) + 2Na_2S_2O_3(aq) \rightarrow Na_2S_4O_6(aq) + 2NaI(aq)$

(i) Using a second sample of brass, another student determined the mean titre to be 17.35 cm^3 of $0.0600 \text{ mol dm}^{-3} \text{ Na}_2 \text{S}_2 \text{O}_3(\text{aq})$.

Calculate the amount, in mol, of $Na_2S_2O_3$ in this student's mean titre.

- amount of $Na_2S_2O_3$ = mol [1]
- (ii) Use the equation for reaction 4 and your answer to (h)(i) to determine the amount, in mol, of I_2 that reacted with the Na₂S₂O₃.
 - amount of I₂ = mol [1]
- (iii) Use the equation for reaction 3 and your answer to (h)(ii) to determine the amount, in mol, of Cu²⁺ in 10.0 cm³ of their solution B.
 - amount of Cu^{2+} = mol [1]
- (iv) Calculate the mass of copper present in the second sample of powdered brass.
 - mass of copper = g [1]
- (v) The mass of the second sample of powdered brass was 1.05 g.
 Calculate the percentage by mass of copper in the second sample of powdered brass.
 Give your answer to three significant figures.

percentage by mass of copper = % [1]

[Total: 16]

[Turn over

豒

© UCLES 2025

6

© UCLES 2025

Ester X has the formula CH₃COOR.

2

R is an alkyl group with the general formula C_nH_{2n+1} . Ester X undergoes alkaline hydrolysis with aqueous potassium hydroxide, KOH(aq).

The resulting mixture is acidified with dilute hydrochloric acid, HCl(aq).

The organic products of the hydrolysis after acidification are ethanoic acid, CH₃COOH, and an alcohol, ROH. Once the identity of ROH is found, the structure of ester X can then be determined.

7

A student uses the following steps.

- Equal molar quantities of ester X and KOH(aq) are placed in a round-bottomed flask. step 1
- A few drops of a suitable indicator are added to show whether a reaction has occurred. step 2
- step 3 A substance is added to promote smooth boiling.
- step 4 The reaction mixture is set up for reflux and heated for 30 minutes.
- After 30 minutes, the reaction mixture in the round-bottomed flask is acidified by adding step 5 HCl(aq) dropwise.
- step 6 Thin-layer chromatography is carried out on the reaction mixture.
- Complete the diagram in Fig. 2.1 to show the apparatus used for reflux in step 4. Label (a) (i) the diagram.

Fig. 2.1

(ii)

Suggest the type of substance added to promote smooth boiling in step 3.

DO NOT WRITE IN THIS MARGIN

(b) As the reaction proceeds in step 4, the indicator changes colour.

Table 2.1 shows the colours of three different indicators at pH 1.0 and at pH 14.0 and the pH range over which the indicators change colour.

indicator	colour at pH 1.0	pH range over which it changes colour	colour at pH 14.0
thymolphthalein	colourless	9.5–10.5	blue
methyl orange	red	3.0-4.5	yellow
bromocresol green	yellow	4.0-5.5	blue

Table 2.1

8

Use the table to identify a suitable indicator. Explain your choice.

ndicator
explanation
[2]

- (c) In step 6, a small sample of the reaction mixture is analysed along with samples of ester X and ethanoic acid.
 - Fig. 2.2 shows the chromatogram produced.

Fig. 2.2

State what feature of the chromatogram shows that the hydrolysis is incomplete.

.....

.....

...... [1]

(d) Suggest an experimental process that could be used to extract the alcohol, ROH, from the reaction mixture.

9

-[1]
- (e) Fig. 2.3 shows an infrared spectrum of the ROH extracted in (d).

Fig.	2.3
------	-----

Tabl	e 2	.2

bond	functional groups containing the bond	characteristic infrared absorption range (in wavenumbers)/cm ⁻¹
C–O	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C–H	alkane	2850–2950
N–H	amine, amide	3300–3500
O–H	carboxyl hydroxy	2500–3000 3200–3650

Use Table 2.2 to explain how the infrared spectrum in Fig. 2.3 shows that the ROH extracted does **not** contain any ester **X**.

.....

......[1]

諁

* 0000800000010 *

(f) Fig. 2.4 shows the proton (^{1}H) NMR spectrum of compound ROH.

Fig. 2.4

Table 2.3 shows some relevant (¹H) NMR information.

Use Table 2.3 to complete Table 2.4, and state the name of ROH.

Table 2.3

environment of proton	example	chemical shift range δ/ppm
alkane	-CH ₃ , -CH ₂ -, >CH-	0.9–1.7
alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, >CH-C=O	2.2–3.0
alkyl next to aromatic ring	CH_3 -Ar, $-CH_2$ -Ar, $>CH$ -Ar	2.3–3.0
alkyl next to electronegative atom	CH ₃ -O, -CH ₂ -O, -CH ₂ -C <i>l</i>	3.2-4.0
attached to alkene	=CHR	4.5-6.0
attached to aromatic ring	H –Ar	6.0–9.0
aldehyde	HCOR	9.3–10.5
alcohol	ROH	0.5-6.0
phenol	Ar–O H	4.5–7.0
carboxylic acid	RCOOH	9.0–13.0

Table 2.4

chemical shift δ/ppm	splitting pattern	relative peak area	structure responsible for the peak
1.2	doublet	6	–CH ₃
		1	
	multiplet	1	

Name of ROH	
[3]

(g) Draw the displayed formula for ester X.

[2]

DO NOT WRITE IN THIS MARGIN (h) Ester X will undergo hydrolysis with water in the presence of $H_2SO_4(aq)$ under reflux, using a similar procedure. Suggest why none of the indicators in Table 2.1 would change colour in this experiment.[1]

I

DO NOT WRITE IN THIS MARGIN

[Total: 14]

12

© UCLES 2025

9701/52/F/M/25

© UCLES 2025

14

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.02 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \text{C}$
molar volume of gas	$V_{\rm m}$ = 22.4 dm ³ mol ⁻¹ at s.t.p. (101 kPa and 273 K) $V_{\rm m}$ = 24.0 dm ³ mol ⁻¹ at room conditions
ionic product of water	$K_{\rm w}$ = 1.00 × 10 ⁻¹⁴ mol ² dm ⁻⁶ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \mathrm{kJ} \mathrm{kg}^{-1} \mathrm{K}^{-1} $ (4.18 J g ⁻¹ K ⁻¹)

۴ (00	00	80	00	000	01	6	
-----	----	----	----	----	-----	----	---	--

4

13

The Periodic Table of Elements

Group

1.0 T

Key

2

、

														1	6							
	18	2	He	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	Кr	krypton 83.8	54	Xe	xenon 131.3	86	Rn	radon -	118	Og	
	17				6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Br	bromine 79.9	53	Ι	iodine 126.9	85	At	astatine -	117	Ъ	
	16				8	0	oxygen 16.0	16	ა	sulfur 32.1	34	Se	selenium 79.0	52	Те	tellurium 127.6	84	Ро	polonium –	116	۲۷	

atomic number atomic symbo name relative atomic mass relative atomic mass 5 5 5 5 5 5 5 5 5 5 3 5 9 2 3 5 9 2 3 5 9 2 3 5 9 2 3 5 0 9 2 3 5 0 9 2 3 5 0 9 2 3 5 0 9 2 3 5 0 9 2 3 5 0 9 5 0 9 5 0 9 5 0 9 5 0 9 5 0 9 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	_															
Be				atomic number							_	5	9	7	ø	6	10
	Be		ato	mic symt	loc							В	U	z	0	ш	Ne
	beryllium 9.0		rela	name ative atomic ma	SS							boron 10.8	carbon 12.0	nitrogen 14.0	oxygen 16.0	fluorine 19.0	neon 20.2
	12											13	14	15	16	17	18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mg											Al	Ni	٩	ი	Cl	Ar
	magnesium 24.3		4	5	9	7	ø	6	10	11	12	aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	chlorine 35.5	argon 39.9
	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	Ca	Sc	F	>	ບັ	Mn	Fe	ပိ	ïZ	Cu	Zn	Ga	Ge	As	Se	Br	Ϋ́
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 37.10 37.00 37.0 37.0 37.0 37.0 37.0 51.0 57.0 51.0 57.0 51.0 57.0 51.0 57.0 51.0 57.0 51.0 57.0 51.0 57.0 51.0 57.0 51.0 57.0 51.0 57.0 51.0 57.0 51.0 57.0 52.0 57.0 52.0 57.0 52.0 57.0 52.0 57.0 52.0	calcium 40.1	scandium 45.0	titanium 47.9	vanadium 50.9	chromium 52.0	manganese 54.9	iron 55.8	cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	krypton 83.8
Sr Y Zr Nb Mo Tc Ru Rh Pd Aq Cd In Sn Sb Te I groutin yman 2700 m mount moun	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Ś	≻	Zr	qN	Mo	Ч	Ru	RЪ	Pd	Ag	ы	In	Sn	Sb	Ч	Ι	Xe
56 57-71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 Bai Infinition 181 W Rei OS Ir Pt Au Hg T1 Pb Bi Po At 1373 1381 180140 1826 166 17 108 111 112 111 112 111 112 113 114 115 116 117 116 117 116 116 117 112 113 114 115 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 117 116 116 117 116 116 117 116 117	strontium 87.6	yttrium 88.9	zirconium 91.2	niobium 92.9	molybdenum 95.9	technetium -	ruthenium 101.1	rhodium 102.9	palladium 106.4	silver 107.9	cadmium 112.4	indium 114.8	tin 118.7	antimony 121.8	tellurium 127.6	iodine 126.9	xenon 131.3
Ba lanthancis Hf Ta W Re Os Ir Pt Au Hg T1 Pb Bi PO At Panian to the train the train to the trai	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Ba	lanthanoids	Η	Та	≥	Re	SO	Ir	Ţ	Au	Нg	Γl	РЬ	ä	Ро	At	Rn
88 89-103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 adum $actinotis$ Rf Db Sg Bh Hs Mt Ds Rg Cn Nh F1 Mc Lv Ts adum $utherfordum$ $dubnium$ seaborgum $bnnium$ hassium meltnerium $damstadium$ copernium $nbnoium$	barium 137.3		hafnium 178.5	tantalum 180.9	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium I	astatine -	radon -
Rate actionids Rf Db Sg Bh Hs Mt Ds Rg Cn Nh F1 Mc Lv Ts addum actionids Rf Db Sg Bh Hs Mt Ds Rg Cn Nh F1 Mc Lv Ts	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
adiun Interfordium dubinum seaborgium lassium methendium damstadium comperium itemorium litemorium litemorium <thlitmori< th=""> li</thlitmori<>	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	ő	ЧN	ĿΙ	Mc	۲<	Ч S	Og
57 58 59 60 61 62 63 64 65 66 67 68 69 70 Instraum certum Pra Nd Pm Sm Eu Gd Tb Dy HO Er Tm Yb Instraum certum precolymium neoroptim gadoinium europtim gadoinium europtim gadoinium europtim gadoinium europtim gadoinium erbium ites;i	radium -		rutherfordium -	dubnium I	seaborgium -	bohrium I	hassium -	meitnerium -	darmstadtium -	roentgenium -	copernicium -	nihonium –	flerovium -	moscovium	livermorium –	tennessine -	oganesson -
57 58 59 60 61 62 63 64 65 66 67 68 69 70 ds La Ce Pr Nd Pm Sm Eu Gd Tb Dy HO Er Tm Yb Ianthanum cerium praseodynium promehium samarium europium gadoinlum terium utuium verbium ytrafiu Yb 138.9 140.1 140.9 144.2 - 150.4 157.3 158.9 162.5 164.9 167.3 168.9 173.1 89 90 91 92 93 94 95 96 97 98 99 100 101 102 173.1 Ac Th Pa U Np Pu Am Cm BK Cf Es Fm Md No 2010 23100 23100 23100 23100 23100 101 <th></th>																	
ds La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Iarnhanum cerium praseodynium promehium samarium cerium transport trand transport </td <td></td> <td>57</td> <td>58</td> <td>59</td> <td>60</td> <td>61</td> <td>62</td> <td>63</td> <td>64</td> <td>65</td> <td>66</td> <td>67</td> <td>68</td> <td>69</td> <td>70</td> <td>71</td> <td></td>		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
Instruction certure presectymium recordination samarium samarium </td <td>oids</td> <td>La</td> <td>Ce</td> <td>P</td> <td>Nd</td> <td>Pm</td> <td>Sm</td> <td>Бu</td> <td>Gd</td> <td>Tb</td> <td>Dy</td> <td>Ч</td> <td>ъ</td> <td>Тд</td> <td>γb</td> <td>Lu</td> <td></td>	oids	La	Ce	P	Nd	Pm	Sm	Бu	Gd	Tb	Dy	Ч	ъ	Тд	γb	Lu	
89 90 91 92 93 94 95 96 97 98 99 100 101 102 Ac Th Pa U Np Pu Am Cm BK Cf Es Fm Md No actinum thorium protactinum uranium neptunium pluonium americum curium bekelium caffornium elselium caffornium issteinium noolium nooli		lanthanum 138.9	cerium 140.1	praseodymium 140.9	neodymium 144.2	promethium -	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium 162.5	holmium 164.9	erbium 167.3	thulium 168.9	ytterbium 173.1	Iutetium 175.0	
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No actinum thorium protactitum varium nepturium plutonium americum cutum betkelium antifornium fermium mendelevium nebelium _ 232.0 231.0 238.0		89	06	91	92	93	94	95	96	97	98	66	100	101	102	103	
thorium protactinium uranium neptunium plubnium americium curium berkelium catifornium einsteinium fermium mendelevium nobelium 232.0 231.0 238.0	S	Ac	Ч	Ра	⊃	dN	Pu	Am	СЗ	¥	ç	Еs	ЕЪ	Md	No	Ļ	
		actinium -	thorium 232.0	protactinium 231.0	uranium 238.0	neptunium -	plutonium –	americium -	curium	berkelium -	californium -	einsteinium –	fermium -	mendelevium -	nobelium -	lawrencium -	

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series

